Separating Exponentially Ambiguous Finite Automata from Polynomially Ambiguous Finite Automata

نویسنده

  • Hing Leung
چکیده

We resolve an open problem raised by Ravikumar and Ibarra [SIAM J. Comput., 18 (1989), pp. 1263–1282] on the succinctness of representations relating to the types of ambiguity of finite automata. We show that there exists a family of nondeterministic finite automata {An} over a two-letter alphabet such that, for any positive integer n, An is exponentially ambiguous and has n states, whereas the smallest equivalent deterministic finite automaton has 2 states, and any smallest equivalent polynomially ambiguous finite automaton has 2 − 1 states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Descriptional Complexity of Ambiguity in Symmetric Difference NFAs

We investigate ambiguity for symmetric difference nondeterministic finite automata. We show the existence of unambiguous, finitely ambiguous, polynomially ambiguous and exponentially ambiguous symmetric difference nondeterministic finite automata. We show that, for each of these classes, there is a family of n-state nondeterministic finite automata such that the smallest equivalent deterministi...

متن کامل

Descriptional Complexity of NFAs of Different Ambiguity

In this paper, we study the tradeoffs in descriptional complexity of NFA (nondeterministic finite automata) of various amounts of ambiguity. We say that two classes of NFA are separated if one class can be exponentially more succinct in descriptional sizes than the other. New results are given for separating DFA (deterministic finite automata) from UFA (unambiguous finite automata), UFA from MD...

متن کامل

On Finite and Polynomial Ambiguity of Weighted Tree Automata

We consider finite and polynomial ambiguity of weighted tree automata. Concerning finite ambiguity, we show that a finitely ambiguous weighted tree automaton can be decomposed into a sum of unambiguous automata. For polynomial ambiguity, we show how to decompose a polynomially ambiguous weighted tree automaton into simpler polynomially ambiguous automata and then analyze the structure of these ...

متن کامل

Deciding Unambiguity and Sequentiality of Polynomially Ambiguous Min-Plus Automata

This paper solves the unambiguity and the sequentiality problem for polynomially ambiguous min-plus automata. This result is proved through a decidable algebraic characterization involving so-called metatransitions and an application of results from the structure theory of finite semigroups. It is noteworthy that the equivalence problem is known to be undecidable for polynomially ambiguous auto...

متن کامل

A Burnside Approach to the Termination of Mohri's Algorithm for Polynomially Ambiguous Min-Plus-Automata

We show that the termination of Mohri’s algorithm is decidable for polynomially ambiguous weighted finite automata over the tropical semiring which gives a partial answer to a question by Mohri [29]. The proof relies on an improvement of the notion of the twins property and a Burnside type characterization for the finiteness of the set of states produced by Mohri’s algorithm. ∗An extended abstr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Comput.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 1998